Warm Up:
Simplify:

$$
\begin{gathered}
\frac{2}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{2 \sqrt{2}}{2} \\
\sqrt{2}
\end{gathered}
$$

$$
\begin{gathered}
3 \sqrt{2}+\sqrt{32}-4 \sqrt{72} \\
3 \sqrt{2}+4 \sqrt{2}-24 \sqrt{2} \\
-17 \sqrt{2}
\end{gathered}
$$

Homework Check:

1. $c \approx 19.2 \mathrm{~cm}$	9. $x=40 \mathrm{~cm}$	
2. $a=12 \mathrm{~cm}$	10. $s \approx 3.5 \mathrm{~cm}$	
3. $b \approx 5.3 \mathrm{~cm}$	10. $s \approx 3.5 \mathrm{~cm}$	
3. $b \approx 5.3 \mathrm{~cm}$	11. $r=13 \mathrm{~cm}$	
4. $d=10 \mathrm{~cm}$	12. 26 units	
5. $s=26 \mathrm{~cm}$	13. yes	19. 127 ft
6. $c \approx 8.5 \mathrm{~cm}$	14. yes	23. 28 m
7. $b=24 \mathrm{~cm}$	15. no 2	25. No, the given lengths are not a Pythagorean triple.

10.2-Special Right Triangles

Length of each leg	1	2	3	4	5	6	7	\ldots	10	\ldots	l
Length of hypotenuse	$\sqrt{2}$	$2 \sqrt{2}$	$3 \sqrt{2}$	$4 \sqrt{2}$	$5 \sqrt{2}$	$6 \sqrt{2}$	$\sqrt{2}$		$10 \sqrt{2}$		$1 \sqrt{2}$

$(45-45-90)$

Isosceles Right Triangle Conjecture: in an isosceles right triangle, if the legs have length L, then the hypotenuse has length $L \sqrt{2}$

Length of shorter leg	1	2	3	4	5	6	7	\ldots	10	\ldots	a
Length of hypotenuse	2	4	6	8	10	12	14		20		$2 a$
Length of longer leg	$\sqrt{3}$	$2 \sqrt{3}$	$3 \sqrt{3}$								$\sqrt{3}$

30-60-90 Triangle Conjecture: in a 30, 60, 90 triangle, if the shorter leg has length a, then the longer leg has length a $\sqrt{3}$ and the hypotenuse has length 2a

In Exercises 1-3, find the unknown lengths.
\qquad

1. $a=$

2. $a=$ \qquad $b=$ \qquad 3. $a=$ \qquad , $b=$ \qquad

3. Find the area of rectangle $A B C D$.

4. Find the perimeter and area of KLMN.

5. $A C=\longrightarrow, A B=$ \qquad , and area $\triangle A B C=$ \qquad .

6. Find the area of an isosceles trapezoid if the bases have lengths 12 cm and 18 cm and the base angles have measure 60°.
